公众号手机端

裂项法的原理是什么?

zhiyongz 4个月前 (08-30) 阅读数 56 #生活经验

以下文字资料是由(太原热线www.0351net.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!

裂项法的原理是什么?

分类: 教育/学业/考试 >> 学习帮助
问题描述:

越详细越好!!!


解析:

一、基本概念:

1、 数列的定义及表示方法:

2、 数列的项与项数:

3、 有穷数列与无穷数列:

4、 递增(减)、摆动、循环数列:

5、 数列{an}的通项公式an:

6、 数列的前n项和公式Sn:

7、 等差数列、公差d、等差数列的结构:

8、 等比数列、公比q、等比数列的结构:

二、基本公式:

9、一般数列的通项an与前n项和Sn的关系:an=

10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:Sn= Sn= Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an≠0)

13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn= Sn=

三、有关等差、等比数列的结论

14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

15、等差数列{an}中,若m+n=p+q,则

16、等比数列{an}中,若m+n=p+q,则

17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

19、两个等比数列{an}与{bn}的积、商、倒数组成的数列

{an bn}、 、 仍为等比数列。

20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

23、三个数成等比的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

24、{an}为等差数列,则 (c>0)是等比数列。

25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。

26. 在等差数列 中:

(1)若项数为 ,则

(2)若数为 则, ,

27. 在等比数列 中:

(1) 若项数为 ,则

(2)若数为 则,

四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

28、分组法求数列的和:如an=2n+3n

29、错位相减法求和:如an=(2n-1)2n

30、裂项法求和:如an=1/n(n+1)

31、倒序相加法求和:如an=

32、求数列{an}的最大、最小项的方法:

① an+1-an=…… 如an= -2n2+29n-3

② (an>0) 如an=

③ an=f(n) 研究函数f(n)的增减性 如an=

33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:

(1)当 >0,d<0时,满足 的项数m使得 取最大值.

(2)当 <0,d>0时,满足 的项数m使得 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

版权声明

本文仅代表作者观点,不代表本站立场。
如有侵权,请留言联系我们删除,感谢。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

热门