integration 的意义
文章标签
integration 的意义
以下文字资料是由(太原热线www.0351net.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!
这只是纯粹巧合,因为用shell method计算圆面积的时候其integrand凑巧就是圆周公式。 请详见zh. *** /wiki/%E5%9C%86%E7%9A%84%E9%9D%A2%E7%A7%AF#.E6.B4.8B.E8.91.B1.E8.AF.81.E6.98.8E。 当然绝无定理讲明integrate只含一个参数的平面图形的周界会得出其面积公式。而事实上integrate圆面积公式只会得出一个没有特别意义的空间数量。(1) What is integration
please refer to definition of integration that I do not go through in details. Good question but I do not try to explain true or not true as it is relating to concept and application. (2) Strictly speaking integrate 2πX = πx^2 + constant. So
do you still think integrate 圆周 得出 圆面积 ? (3) integrate 圆面积 会得出什么呢 = relating to volume . Recall result of integration or differentiation on polynomial d/dx ( x^n ) = nX^(n-1)
so Integrate X^(n-1) = x^n / n + c
c is constant For Sphere
when volume
area
perimeter
are respectively represented by equations V=4/3 pi x^3
where x=radius
A= pi x^2
L = 2 pi X obviously
it has already set the relation of V
A
and L by X. so
when you applying integration on L
result will be relating to A
when applying integration to A
result will be relating to V. you can cite another example of a solid cube of volume V
area A and edge length L respectively by formula V= X^3 A=6X^2 where A is surface area L=X pls apply integrate or differentiation to V
A
L respective X
sure it shows some relationship of the result because already pre-set relation of V
A and L. Hope it is clear.
版权声明
本文仅代表作者观点,不代表本站立场。
如有侵权,请留言联系我们删除,感谢。
发表评论:
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。