202503-05 两个矩阵相乘等于0说明什么(矩阵是一个这一方) NEW 核心提示:两个矩阵相乘等于0说明是零矩阵。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。零矩阵,在数学中,特别是在线性代数中,零矩阵即所有元素 两个矩阵相乘等于0说明是零矩阵。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。零矩阵,在数学中,特别是在线... Read More >
202501-09 全体实数定义是什么 什么是全体实数定义 NEW 核心提示:1、全体实数定义是有理数和无理数统称为实数。 2、实数有如下的分类方法:如果按有理数和无理数分类,则有实数、有理数、正有理数、零、负有理数、有限小数或无限循环小数无理数、正无理数、负无理数、无限不循环小数。由于有理数和无理数都有正负之分,如 1、全体实数定义是有理数和无理数统称为实数。 2、实数有如下的分类方法:如果按有理数和无理数分类,则有实数、有理数、正有理数、零、负有理数、有限小数或无限循环小数无理数、正无理数、负无理数、无限不循环小数。由于有理... Read More >
202411-24 实数、虚数是什么 什么是实数、虚数 NEW 核心提示:1、实数(realnumber)是有理数和无理数的总称。实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数 1、实数(realnumber)是有理数和无理数的总称。实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构... Read More >
202407-04 复数是几年级学的 复数的运算法则是什么 核心提示:1、复数是指实数和虚数,是高等数学的基础知识,是大学一年级的第一章。我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称 1、复数是指实数和虚数,是高等数学的基础知识,是大学一年级的第一章。我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等... Read More >
202403-07 无理数是实数吗? 无理数的定义是什么 核心提示:1、无理数属于实数。2、“实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。3、无理数,也称 1、无理数属于实数。2、“实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同... Read More >